WEEK -3

CODE HACKATHON

(Department-CSE)
Date: 18 August 2018 Total Marks : 60
Created by: - M.pranay % B-16 - 8919345427
Nishanth 3% B-16 - 7093197160
V.Srinivas 3 B-16 - 8374256375

Ajit panigrahi 3% B-12- 8249852901

Ql.) You're given the pointer to the head node of a sorted linked list,
where the data in the nodes is in ascending order.

Delete as few nodes as possible so that the list does not contain any
value more than once.

The given head pointer may be null indicating that the list is empty.

(15 MARKS)

Input Format:

You have to complete the "Node* removeDuplicates (Node* head)" method which
takes one argument - the head of the sorted linked list.

The input is handled by the code.

Example:

Initial List: 1 2 3 4 4 5

After Removing Duplicates: 1 2 3 4 5

Output Format:

Delete as few nodes as possible to ensure that no two nodes have the same
data.

Adjust the next pointers to ensure that the remaining nodes form a single
sorted linked list.

Then return the head of the sorted updated linked list. Do NOT print
anything to stdout/console.

The output is handled by the code in the editor.

#include<iostream>

using namespace std;

class Node

{

public:

int data;
Node* next;
Node (int n)
{
this->data=n;

this->next=NULL;

}i

class List

{

public:

Node* head;
Node* tail;
List ()

{

}s

this->head=NULL;

this->tail=NULL;

void insert node(int data)

{
Node* n=new Node (data);
if (this->head==NULL)
{

this->head=n;

else

this->tail->next=n;
}
this->tail=n;
}
void display list()
{
if (head==NULL)
COUt<<"EMPTY"<<endl;
Node* temp=head;
while (temp)
{
cout<<temp->data<<" ";
temp=temp->next;
}

cout<<endl;

Node* removeDuplicates (Node* head) {

//Complete this function.

main ()

int n;

int value;

cout<<"Enter the number of nodes in the first list:";
cin>>n;

//Declare a new List.

List *l=new List();

if (n<=0)

{

cout<<"No nodes in the list.";

else

cout<<"Enter the nodes in the list:";
for(int i=0;i<n;i++)
{

cin>>value;

l->insert node (value);

}
//Display the Initial list...
cout<<"Before:"<<endl;

l1->display list();

//Removing Duplicates.

List *simple list;

simple list->head=removeDuplicates (l->head);
//Display the Simplified List.
cout<<"After:"<<endl;

simple list->display list();

The Caesar cipher is one of the earliest known and simplest ciphers. It is
a type of substitution cipher in which each letter in the plaintext is
'shifted' a certain number of places down the alphabet. For example, with
a shift of 1, A would be replaced by B, B would become C, and so on.

(10 MARKS)

For a string of length N, and an offset of K, print the encoded result.

Input Format:
1. First line: N, size of string
2. Second line: S, string

3. Third line: K, caeser cipher key

Constraints:

1. 1 <= N <= 100

2. S consists of only alphabets (uppercase & lowercase)

3. -1079 <= K <= 1079

Sample Input:

ajit

Sample Output:

fony

Sample Input:

AbCdE

Sample Output:

In a Facebook tagging challenge, a group of people must tag every other
person in the same group exactly once or be tagged by that person, but not
both. How many tags take place in a group of N people?

(10 MARKS)

Example:

In a group of 4 people, A, B, C & D:

If A tags B & C, but D tags A, A cannot tag D. --> 2 tags by A
B cannot tag A, but can tag C & D. --> 2 tags by B
C cannot tag A & B, but can tag D. --> 1 tag by C

D already tagged A but has been tagged by others instead --> 1 tag by D

Total: 2 + 2 + 1 + 1 = 6 tags

Sample Input:

Sample Output:

Sample Input:

21

Sample Output:

Q4.) We are will be providing you a string known as ‘WIBGYOR’ (5 MARKS)
You have to print this string in the following pattern

Output should be like first you have to print the whole string as it is

without any change. After printing the string the next line should begin
starting letter of the given string and ‘*’ in between the letters. When
it goes to nth next line it has to print n ‘*’ between the given strings.

INPUT format: first line contains the range upto which the star has to be
printed.

Sample Input 1: 4

Sample Output 1: VIBGYOR
V*I*B*G*Y*O*R
V**I**B**G**Y**O**R
V***I***B***G***Y***O***R
v****I****B****G****Y****O****R

Sample input 2: 2

Sample output 2: VIBGYOR
V*I*B*G*Y*O*R
V**I**B**G**Y**O**R

Q5) .

For a given decimal number N, check if its binary representation has
exactly one 'l' or not.

(5 MARKS)

Sample Input:

2097152

Sample Output:

True

Sample Input:

32767

Sample Output:

You are given a function - Node* mergelists (Node* headl,Node* head2) .This
function takes two head pointers of two different SORTED Linked lists.

(15-MARKS)

Given these two head pointers, MANIPULATE THE LINKS between the two SORTED
lists such that it forms a Merged List that is still SORTED.

Return the head pointer that points to the third SORTED list after
manipulating the list via the function "mergelists".

YOU ONLY HAVE TO RETURN THE POINTER , THE OUTPUT IS ALREADY MANAGED.

COMMENT OUT THE FUNCTION "mergelists" AND COMPLETE IT ACCORDING TO THE
TASK.

SAMPLE CASE:

List 1:

1->2->3->NULL

List 2:

3->4->NULL

OUTPUT LIST:

1->2->3->3->4-NULL

OUTPUT LIST STRUCTURE:

1->2->3-|

| ->3->4->NULL.

IMPORTANT NOTE:Either of the head pointer passed to the function headl or
head?2 may be NULL.

*/

#include<iostream>

using namespace std;

class Node

{

public:

int data;
Node* next;
Node (int n)
{
this->data=n;

this->next=NULL;

}s

class List

{

public:

Node* head;
Node* tail;
List ()
{
this->head=NULL;

this->tail=NULL;

void insert node(int data)
{
Node* n=new Node (data);

if (this->head==NULL)

this->head=n;

else

this->tail->next=n;
}
this->tail=n;
}
void display list()
{
if (head==NULL)
Cout<<"EMPTY"<<endl;
Node* temp=head;
while (temp)
{
cout<<temp->data<<" ";
temp=temp->next;
}

cout<<endl;

}i

Node* mergelists (Node* headl,Node *head2)//Complete this
function..........

// such that it return a pointer t the merge list.

main ()

int nl,n2;
int value;
cout<<"Enter the number of nodes in the first list:";
cin>>nl;
cout<<"Enter the number of nodes in the second list:";
cin>>n2;
List* ll=new List();
List* 12=new List();
List* 13=new List();
//Input List L.veiiinenineieenenennn
if (n1>0)
{

cout<<"Enter the first list:";

for(int i=0;i<nl; i++)

{

cin>>value;

ll->insert node (value);

//Input List 2. ittt
if (n2>0)
{
cout<<"Enter the second list:";
for (int i=0;i<n2;i++)
{

cin>>value;

12->insert node (value);

//Displaying the Initial Lists........
cout<<"List 1:"<<endl;

ll->display list();

cout<<endl;

cout<<"List 2:"<<endl;

12->display list();

cout<<endl;

J/OUEPUL . et e e e e e e e
cout<<"Output:"<<endl;
13->head=mergelists (l1l->head, 12->head) ;

13->display list();

ALL THE BEST ©

	WEEK – 3
	CODE HACKATHON

